Walking variability during continuous pseudo-random oscillations of the support surface and visual field.

نویسندگان

  • Patricia M McAndrew
  • Jonathan B Dingwell
  • Jason M Wilken
چکیده

Walking on uneven surfaces or while undergoing perturbations has been associated with increased gait variability in both modeling and human studies. Previous gait research involving continuous perturbations has focused on sinusoidal oscillations, which can result in individuals predicting the perturbation and/or entraining to it. Therefore, we examined the effects of continuous, pseudo-random support surface and visual field oscillations on 12 healthy, young participants. Participants walked in a virtual reality environment under no perturbation (NOP), anterior-posterior (AP) walking surface and visual oscillation and mediolateral (ML) walking surface and visual oscillation conditions. Participants exhibited shorter (p< or =0.005), wider (p<0.001) and faster (p<0.001) steps relative to NOP during ML perturbations and shorter (p< or =0.005) and wider (p<0.001) steps during AP perturbations. Step length variability and step width variability both increased relative to NOP during all perturbation conditions (p<0.001) but exhibited greater increases for the ML perturbations (p<0.001). Participants exhibited greater trunk position variability and trunk velocity variability in the ML direction than in the AP direction during ML perturbations relative to NOP (p<0.001). Significantly greater variability in the ML direction indicates that to maintain stability, participants needed to exert greater control in the ML direction. This observation is consistent with prior modeling predictions. The large and consistent responses observed during ML visual and walking surface perturbations suggest potential for application during gait training and patient assessment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual contribution to human standing balance during support surface tilts

Visual position and velocity cues improve human standing balance, reducing sway responses to external disturbances and sway variability. Previous work suggested that human balancing is based on sensory estimates of external disturbances and their compensation using feedback mechanisms (Disturbance Estimation and Compensation, DEC model). This study investigates the visual effects on sway respon...

متن کامل

Correlation between Trunk-Pelvis Inter-Segmental Coordination Parameters during Walking and Disability Level in Chronic Low Back Pain Patients

Background: Chronic low back pain (CLBP) disability has been particularly frustrating because its treatment has been a great therapeutic challenge. Disability has been suggested to depend on different factors that should be found and considered in the medical management. The inter-segmental coordination is often impaired in CLBP subjects; however, to the best of our knowledge, there is no evide...

متن کامل

Analysis of 3D Passive Walking Including Turning Motions for the Finite-width Rimless Wheel

The focus of studies in the field of passive walking has often been on straight walking, while less attention has been paid to the field of turning motions. In this paper, the passive motions of a finite width rimless wheel as the simplest 3D model of passive biped walkers was investigated with a focus on turning motions. For this purpose, the hybrid model of the system consisting of continuous...

متن کامل

The Gait Disorder in Downbeat Nystagmus Syndrome

BACKGROUND Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus with key symptoms of oscillopsia and gait disturbance. Gait disturbance could be a result of impaired visual feedback due to the involuntary ocular oscillations. Alternatively, a malfunction of cerebellar locomotor control might be involved, since DBN is considered a vestibulocerebellar disorder. METHODS Inves...

متن کامل

Gender Differences in Intra Limb Coordination while Walking in Older People

Objectives: Knowledge about gender differences in intra-limb coordination during walking provides insight into the adaptability of central nervous system for controlling gait in older adults. We assessed the variability and phase dynamic of the intra-limb coordination in older men and women during walking. Methods: Twenty two older people, 11 female and 11 male, participated in this study. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 43 8  شماره 

صفحات  -

تاریخ انتشار 2010